Лекция 13
ГЛАВА 15 Работа в фоновом режиме
Что мы расскажем:
· Поток пользовательского интерфейса
· Потоки и исполняемые файлы
· Обработчики и сообщения
· AsyncTask
· DoAsync от Anko
Никто не хочет использовать медленные приложения. Пользователи хотят, чтобы их приложения были четкими и быстрыми.
Этого хочет и каждый разработчик - никто не собирается создавать свое приложение и говорить: «Это приложение слишком быстрое, может мне стоит немного его замедлить»; никто этого не делает. Так почему же есть приложения, которые двигаются как патока? Вы, наверное, видели некоторые из этих приложений, о которых я говорю, о - вы знаете тех, где вы пытаетесь прокрутить представление ресайклера или список, а затем он запускается, останавливается и выходит. Вялый.
Мы можем перечислить ряд причин, по которым некоторые приложения работают медленно, но я уверен, что одна из 10 основных причин заключается в том, что в основном потоке происходит слишком много. Вероятно, он обременен процедурой ввода-вывода или сложным вычислением - или и тем, и другим - и это плохо.
Означает ли это, что вам не следует выполнять какие-либо вызовы ввода-вывода или выполнять какие-либо сложные вычисления в своем приложении? Ни за что! Но вы должны знать, где размещать вызовы ввода-вывода или сложные вычисления; и это не в основном потоке.
В этой главе мы рассмотрим, как уберечь медленно выполняющиеся коды от основного потока, чтобы приложения могли реагировать четко и быстро.
Базовые концепции
Процесс создается при запуске приложения. Ему выделены некоторые ресурсы, такие как память и некоторые другие вещи, необходимые для выполнения своей работы. Также ему дана как минимум одна ветка.
Поток, грубо говоря, - это последовательность инструкций. Это то, что на самом деле выполняет ваш код. Пока приложение живо, поток будет использовать ресурсы процесса. Он может читать или записывать данные в память, на диск или, иногда, даже в сетевой ввод-вывод. Пока поток взаимодействует со всем этим, на самом деле он просто ждет. Во время ожидания он не может использовать циклы ЦП. Мы не можем позволить тратить все эти циклы ЦП зря. Мы можем? Что мы можем сделать, так это создать другие потоки, чтобы, когда один или несколько потоков чего-то ждут, другие потоки могли использовать ЦП. Это случай многопоточных приложений.
Когда среда выполнения создала экземпляр приложения, этому процессу был предоставлен один поток.
Это называется основным потоком; некоторые разработчики называют это потоком пользовательского интерфейса. Среда выполнения дала нам только один поток и не более того. Но хорошая новость в том, что мы можем создавать больше. Потоку пользовательского интерфейса разрешено порождать другие потоки.
Поток пользовательского интерфейса
Прежде чем мы углубимся в детали порождения или создания дочерних потоков, давайте сначала поговорим о потоке пользовательского интерфейса. Он отвечает за запуск основного действия и расширение XML-макета, чтобы все элементы View в нем превратились в реальные объекты Java (например, кнопки, текстовые представления и т. д.). Короче говоря, это тот, кто отвечает за UI.
Когда вы выполняете вызов типа setText или setHint, он будет выполнен в основном потоке; если вы думали, что эти вызовы выполняются немедленно, это было бы неправильно. Какие бы утверждения вы ни писали в приложении, обычно выполняются следующие действия:
1. Заявления будут помещены в MessageQueue, и там они будут оставаться, пока
2. Обработчик забирает его для исполнения; и наконец
3. он выполняется в основном потоке.
Вы можете сказать: «Все это приятно знать, но что с того?». Что ж, вам следует позаботиться об этом, потому что основной поток используется не только для рисования элементов пользовательского интерфейса. Он также используется для всего остального, что происходит в вашем приложении. Помните, что у Activity есть другие методы, такие как onCreate, onStop, onResume, onCreateOptionsMenu, onOptionsItemSelected, и другие подобные методы; всякий раз, когда код выполняется в этих блоках, среда выполнения Android не может обработать какое-либо сообщение в очереди. Он находится в заблокированном состоянии; Заблокированное состояние - это жаргон параллелизма, используемый разработчиками, когда они имеют в виду сказать, что приложение ожидает завершения чего-либо, прежде чем оно сможет продолжить свою работу. Не обращайте внимания на жаргон - просто помните, что блокировка может плохо сказаться на пользовательском опыте.
Как такое могло случиться? Ответ: «потому что у нас есть только одна ветка, чтобы делать все это». Решение этой проблемы - создать фоновый поток или дочерний поток и выполнять там наши задачи, не связанные с пользовательским интерфейсом, но не всегда. Если вы считаете, что вызов достаточно дешевый с точки зрения ресурсов обработки, скажем, от 1 мс до 15 мс, тогда просто сделайте это в основном потоке. Если это займет более 16 мс и больше, вам, вероятно, следует сделать это в фоновом потоке.
Порог в 16 мс - это рекомендация от Project Butter, выпущенного во времена Android 4.1 (Jellybean). Он был предназначен для повышения производительности приложений Android. Когда среда выполнения обнаруживает, что вы слишком много делаете в основном потоке, она начинает отбрасывать кадры. Когда вы не совершаете дорогостоящие вызовы, приложение работает с плавной скоростью 60 кадров в секунду (кадров в секунду). Если вы свяжете основной поток, вы начнете замечать вялую производительность или то, что команда Android называет «спадом». У меня нет четких инструкций, которые подскажут, какой вызов дорогой, а какой дешевый.
Что я могу сделать, так это показать вам примеры обоих вызовов; Надеюсь, вы получите представление о том, как выглядит дешевый или дорогой звонок.
Листинг 15-1 - дешевый вызов, даже если он устанавливает для атрибута text вычисленное значение. Расчет достаточно простой, поток пользовательского интерфейса не потревожит.
Листинг 15-1. Установите для текстового атрибута вычисленное значение: дешевый звонок
button.setOnClickListener {
 txtsecondnumber.setText ((2 * 2 * 2) .toString ())
}

Листинг 15-2 может показаться сложным, поскольку он вычисляет GCF. Что, если цифры большие - не будет ли это слишком утомительно для основного потока? На самом деле, нет. В листинге 15-2 используется алгоритм Евклида для поиска GCF. Алгоритм работает за постоянное время или O (1); это еще один жаргон, который используют разработчики, когда говорят о временной сложности алгоритма или времени, необходимого для завершения кода. O (1) или постоянное время означает, что алгоритм будет работать одинаково независимо от того, большой или маленький вход; временная сложность не сильно меняет, находим ли мы GCF 12 и 15 или 16 848 662 и 24. Так что вполне нормально поместить это в основной поток.
Примечание. Сложность алгоритмов по времени может быть выражена как O (1), O (N), O (N2), O (2N) или O (log N), где N обозначает размер входных данных. Это так называемая нотация большое «O». Приятно что-нибудь об этом знать, особенно если вы хотите писать эффективные коды.
Листинг 15-2. Рассчитать GCF: звонок по-прежнему дешевый
button.setOnClickListener {
 val numfno = txtfirstnumber.text.toString (). toInt ()
 val numsno = txtsecondnumber.text.toString (). toInt ()
 var numbig = if (numfno> numsno) numfno else numsno
 var numsmall = if (numfno <numsno) numfno else numsno
 var rem = numbig% numsmall
 while (rem! = 0) {
 numbig = numsmall
 numsmall = rem
 rem = число% numsmall
 }
 Toast.makeText (this @ MainActivity, "GCF is $ numsmall", Toast.LENGTH_LONG).
show()
}

Листинг 15-3 считается дорогостоящим, поскольку он вызывает сетевой ввод-вывод. Фактически, код вообще не будет компилироваться, потому что это приведет к исключению NetworkOnMainThreadException. IDE даже не позволит нам пройти процесс компиляции. Как правило, если ваш код будет выполнять вызовы ввода-вывода, будь то локальный файл или сеть, вы должны делать это в фоновом потоке.
Листинг 15-3. Прочтите что-нибудь с GitHub: дорогой звонок
button.setOnClickListener {
 val url = "https://api.github.com/users/tedhagos"
 println("inside doGetHttp")
 val client = OkHttpClient()
 val request = Request.Builder().url(url).build()
 val response = client.newCall(request).execute()
 val bodystr = response.body().string()
}

Листинг 15-4 не выполняет никакого ввода-вывода, но функция killSomeTime имитирует дорогостоящий вызов.
Листинг 15-4. Сделайте что-нибудь, что блокирует: дорогой звонок
button.setOnClickListener {
 killSomeTime()
 }
}
private fun killSomeTime() {
 for (i in 1..20) {
 textView.text = i.toString()
 println("i:$i")
 Thread.sleep(2000)
 }
}

Вызов Thread.sleep в листинге 15-4 является явным признаком того, что код будет заблокирован, но он может имитировать то, что может занять 2 секунды. На первый взгляд вы можете подумать, что textView будет обновляться каждые 2 секунды, чтобы показать текущее значение i, но этого не произойдет, потому что среда выполнения уже снизит частоту кадров. Поток пользовательского интерфейса не может обновить textView, потому что он завис в ожидании пробуждения и возобновления Thread.
Представьте, что у вас есть код, подобный листингу 15-5 - в нем нет вызова ввода-вывода или Thread.sleep, но он не будет обновлять текстовое поле (на втором уровне цикла), как вы ожидаете - снова, потому что основной поток занят вычислением декартова произведения.
Листинг 15-5. Глубоко вложенный расчет: дорогостоящий звонок
button.setOnClickListener {
 for (i in 1..100000) {
 for (j in 1..10000) {
 txtfirstnumber.setText ((i * j) .toString ())
 for (k in 1..10000) {
 println ("i: $ i | j: $ j | k $ k | i * j * k = $ {i * j *  
              k}")
 }
 }
 }
}

Примечание. Декартово произведение - это математический набор, который является результатом умножения других наборов.
В более ранних версиях Android, до Project Butter, коды, показанные в листингах 15-3, 15-4 и 15-5, могли приводить к ошибке ANR (Android не отвечает). В настоящее время они могут больше не отображать ANR, но большую озабоченность вызывает мусор. Чтобы избежать засорения, мы должны переместить эти дорогие вызовы в фоновый поток. В Android есть много способов сделать это. Некоторые решения находятся на уровне фреймворка, например, API загрузчика или AsyncTaskLoader; однако эти вещи устарели, начиная с API 28, поэтому лучше держаться от них подальше. Есть также несколько низкоуровневых способов выполнения некоторой задачи в фоновом режиме, а именно:
· Потоки и исполняемые файлы из Java
· AsyncTask, это часть платформы Android.
· Обработчики и сообщения, также являющиеся частью платформы Android.
· DoAsync от Anko, Anko - это сторонняя библиотека, написанная на Kotin.
Потоки и исполняемые файлы
Давайте воспользуемся листингом 15-14 в качестве примера использования для нашего исследования. Для запуска этого кода вам понадобится пользовательский интерфейс, похожий на рисунок 15-1; xml-код для нашего базового пользовательского интерфейса приведен в листинге 15-6.
[image: ]
Рисунок 15-1. Наш базовый макет activity_main
<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout xmlns:android=http://schemas.
android.com/apk/res/android
 xmlns:app=http://schemas.android.com/apk/res-auto
 xmlns:tools=http://schemas.android.com/tools
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">
 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
android: layout_marginStart = "16dp"
 android: layout_marginTop = "16dp"
 android: text = "Кнопка"
 app: layout_constraintStart_toStartOf = "родительский"
 app: layout_constraintTop_toBottomOf = "@ + id / textView" />
 <TextView
 android: id = "@ + id / textView"
 android: layout_width = "wrap_content"
 android: layout_height = "wrap_content"
 android: layout_marginStart = "16dp"
 android: layout_marginTop = "32dp"
 android: text = "TextView"
 android: textSize = "30sp"
 app: layout_constraintStart_toStartOf = "родительский"
 app: layout_constraintTop_toTopOf = "parent" />
</android.support.constraint.ConstraintLayout>

Если вы попытаетесь запустить Листинг 15-4 в его нынешнем виде, он запустится; но он не будет работать.
Вы заметите следующее:
1. Вы ожидаете, что textView будет обновляться каждые 2 секунды, чтобы показать текущее значение i. Не будет. Рамки упадут, так что вы не увидите никаких действий пользовательского интерфейса.
2. Но вы увидите значение I, поскольку оно обновляется каждые 2 секунды в окне Logcat. Это связано с тем, что на println не влияет снижение частоты кадров - вывод находится в консоли, а не в пользовательском интерфейсе.
3. Вы можете увидеть подобное сообщение из среды выполнения
Хореограф:
07-31 15: 51: 29.646 13403-13403 / net.workingdev.
ch15scratchasynctask I / Хореограф: пропущено 2402 кадра!

Приложение может слишком много работать со своим основным потоком.
Хотя приложение не отображало ANR, оно значительно замедлилось. Вы определенно можете почувствовать некоторую дрожь. Чтобы исправить это, давайте переместим ненужный код в фоновый поток.
Чтобы создать поток и запустить его, вам необходимо сделать следующее:
1. Создайте класс, реализующий тип Runnable.
2. Все, что вы хотите запустить в фоновом режиме, поместите в
переопределенный метод запуска.
3. Создайте объект Thread, затем передайте объект Runnable, который вы
4. только что созданный на шаге 1 в конструктор Thread.
5. Вызовите метод запуска Thread.
6. Каждый раз, когда значение переменной i изменяется, мы обновляем
7. TextView.
В коде это выглядит следующим образом (см. Листинг 15-7).
Листинг 15-7. Потоки и исполняемые файлы
class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 button.setOnClickListener {
 val runnable = Worker()
 val thread = Thread(runnable)
 thread.start()
 }
 }
 inner class Worker : Runnable {
 override fun run() {
 killSomeTime()
 }
 }
 private fun killSomeTime() {
 for (i in 1..20) {
 Thread.sleep(2000)
 println("i: $i")
 }
 }
}

К настоящему времени, в главе 15 этой книги, вы уже знаете об анонимных объектах, лямбдах и способах объединения вызовов функций в цепочку. У нас должно получиться что-то вроде этого:
button.setOnClickListener {
 Thread(Runnable { ❶ ❷
 killSomeTime()
 }).start() ❸
}

❶ Анонимный объект Runnable создается с использованием лямбда-выражений Kotlin. Он передается конструктору класса Thread.
❷ Нам больше не нужно писать метод запуска. Runnable - это класс SAM (класс с одним абстрактным методом). Вам не нужно явно указывать имя абстрактного метода, когда вы используете класс SAM в лямбда-выражении.
❸ Вызов запуска увеличивает скорость передачи.
Наш код должен работать нормально прямо сейчас, если все, что мы хотим сделать, это вывести на консоль. Но помните, что нам нужно установить значение TextField на текущее значение i.
Фоновому потоку не разрешено ничего изменять в пользовательском интерфейсе. Эта ответственность принадлежит только потоку пользовательского интерфейса. Итак, следующая проблема, которую нам нужно решить, - это как вернуться к потоку пользовательского интерфейса, чтобы мы могли обновить TextView. Есть несколько способов сделать это, но самый простой - вызвать метод runOnUiThread класса Activity.
Метод runOnUiThread принимает объект Runnable и выполняет код объекта Runnable в основном потоке. В листинге 15-8 показан полный, аннотированный и объясненный код MainActivity.
Листинг 15-8. Полный код MainActivity с аннотациями
import android.os.AsyncTask
import android.support.v7.app.AppCompatActivity
import android.os.Bundle
import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 button.setOnClickListener {
 Thread(Runnable { ❶
 killSomeTime() ❷
 }).start() ❸
 }
 }
 private fun killSomeTime() {
 for (i in 1..20) {
 runOnUiThread(Runnable{ ❹
 textView.text = i.toString()
 })
 println("i:$i")
 Thread.sleep(2000)
 }
 }
}
}

❶ Чтобы создать фоновый поток, вам необходимо создать экземпляр типа Runnable (Thread) и запустить его. Конструктор Thread принимает тип Runnable и выполняет все, что находится внутри метода run. Я использовал объектное выражение в этой строке для создания экземпляра типа Runnable без создания именованного подкласса - вроде как анонимные классы Java.
❷ Теперь мы находимся внутри метода run Runnable. Мы в фоновом режиме.
❸ Не забудьте вызвать start для объекта Thread.
❹ Одним из ограничений фонового потока является то, что он не может делать ничего, что изменяет пользовательский интерфейс. Любой код модификации пользовательского интерфейса должен запускаться из исходного потока, создавшего пользовательский интерфейс, т. е. Потока пользовательского интерфейса. Если вам нужно изменить пользовательский интерфейс из фонового потока (как здесь), вы можете вызвать метод runOnUiThread класса Activity. Он принимает тип Runnable (опять же), вы можете поместить весь код изменения пользовательского интерфейса в метод run этого типа Runnable.
Когда вы запустите этот код, вы должны видеть обновленное значение переменной i каждые 2 секунды. Хореограф также перестанет беспокоить нас о пропущенных кадрах, потому что мы вернулись к плавной скорости 60 кадров в секунду.
Использование класса обработчика
Класс Handler, в отличие от Thread, является частью платформы Android, а не Java.
Объекты-обработчики используются в основном для управления потоками. Помните, что ранее обсуждалось, что ваш код помещается в MessageQueue; там он ждет, пока его не подберут и не выполнят - это Обработчик, который выбирает и выполняет.
Основная идея состоит в том, чтобы получить ссылку на обработчик основного потока, а затем, пока мы находимся внутри фонового потока (где мы не можем вносить какие-либо изменения пользовательского интерфейса), отправить сообщение объекту-обработчику. Используйте объект Message для передачи данных между фоновым потоком и основным потоком.
Чтобы использовать объект Handler, вам необходимо сделать следующее:
1. Получите объект Handler, связанный с потоком пользовательского интерфейса.
2. Где-то в коде, когда вы собираетесь сделать что-то, что может вызвать jank, запустите его вместо этого в фоновом потоке.
3. Пока вы находитесь в фоновом потоке, когда вам нужно измените что-нибудь в пользовательском интерфейсе, сделайте следующее:
a. Создайте объект сообщения, лучший способ сделать это - вызвать Message.obtain ().
b. Отправьте сообщение объекту Handler, вызвав sendMessage метод. Объекты сообщений могут нести данные. В атрибут data объекта Message является объектом Bundle, поэтому вы можете использовать для него различные методы putXXX () (например, putString, putInt, putBundle, putFloat и т. д.).
4. Вы можете внести изменения в пользовательский интерфейс в обратном вызове handleMessage
Объект-обработчик.
В листинге 15-9 показано, как все это объединяется в коде.
Листинг 15-9. Полный список для MainActivity, с комментариями и пояснениями
import android.support.v7.app.AppCompatActivity
import android.os.Bundle
import android.os.Handler
import android.os.Message
import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : AppCompatActivity() {
 lateinit var mhandler: Handler ❶
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 mhandler = object : Handler() { ❷
 override fun handleMessage(msg: Message?) {
 textView.text = msg?.data?.getString("counter") 
        ❸
 }
 }
button.setOnClickListener {
 Thread(Runnable {
 killSomeTime() ❹
 }).start()
 }
}
 private fun killSomeTime() {
 for (i in 1..20) {
 var msg = Message.obtain() ❺
 msg.data.putString("counter", i.toString()) ❻
 mhandler.sendMessage(msg) ❼
 Thread.sleep(2000)
 }
 }
}

❶ Объявите объект Handler как свойство класса. Нам нужен доступ к нему из двух наших функций верхнего уровня. Здесь мы используем lateinit, потому что еще не готовы определить объект.
❷ Сейчас мы определяем объект Handler. Мы получаем объект Handler, связанный с потоком пользовательского интерфейса.
❸ Здесь безопасно вносить изменения в пользовательский интерфейс. Это обработчик, связанный с потоком пользовательского интерфейса. Обратный вызов handleMessage будет вызван средой выполнения, когда мы вызовем sendMessage. Параметр Message этого метода передает данные.
❹ killSomeTime представляет любую задачу ввода-вывода или трудоемкую задачу. Всегда запускайте его в фоновом потоке, чтобы избежать засорения.
❺ Создайте объект "Сообщение". Это то, что мы отправим обработчику позже.
❻ Свойство data объекта Message похоже на Bundle - в него можно помещать вещи. Это как словарь: каждый элемент представляет собой пару - ключ и значение. Мы передали методу putString () две вещи:
1. «счетчик», ключ
2. i.toString (), значение
❼ Отправьте сообщение объекту-обработчику.
Когда вы запускаете этот код, он работает так же хорошо, как наш предыдущий пример Thread.
AsyncTask
Другой способ запускать коды в фоновом режиме - использовать класс AsyncTask. AsyncTask, как и класс Handler, является частью платформы Android. Как и Handler, он имеет механизм для выполнения работы в фоновом режиме, а также предоставляет (более чистый) способ обновления пользовательского интерфейса.
Чтобы использовать AsyncTask, как правило, необходимо сделать следующее:
1. Расширьте класс AsyncTask.
2. Переопределите метод doInBackground в AsyncTask, чтобы можно было выполнять фоновую работу.
3. Переопределите еще пару методов жизненного цикла AsyncTask, чтобы вы могли обновить пользовательский интерфейс и сообщить об общем состоянии фоновой задачи.
4. Создайте экземпляр подкласса AsyncTask и вызовите выполнение - таким образом вы запускаете фоновую операцию.
Одна из причин, по которой AsyncTask менее предпочтительна, чем простые потоки, заключается в том, что он использует универсальные шаблоны. Класс AsyncTask параметризован. Вы должны указать три типа, прежде чем вы сможете его использовать. В листинге 15-10 показано, как создать подкласс класса AsyncTask.
Листинг 15-10. Создание подкласса AsyncTask
AsyncTask<Void, String, Boolean> { ❶
 override fun doInBackground(vararg p0: Void?) : Boolean { ❷
 // statement
 publishProgress("status of anything") ❸
 }
 override fun onProgressUpdate(vararg values: String?) {
 // update the UI ❹
 }
 override fun onPostExecute(result: Boolean?) {
 println(result) ❺
 }
}

❶ AsyncTask - это параметризованный класс. Вы должны указать три типа, прежде чем сможете его использовать.
Эти три типа в том порядке, в котором они появляются, следующие:
a. [bookmark: _GoBack]Params. Это информация, которую необходимо передать в AsyncTask, чтобы она могла выполнять фоновую задачу. Это может быть что угодно, например, список URL-адресов, объект (-ы) просмотра или строка (-и). Чтобы нам было немного сложнее, это параметр vararg. Обычно разработчики используют этот параметр для передачи элементов View, чтобы AsyncTask могла ссылаться на объекты View Activity. Но в нашем примере я сделаю AsyncTask внутренним классом - таким образом, он может ссылаться на любой элемент View в MainActivity (по этой причине я использовал Void в качестве параметра первого типа - он мне просто не нужен).
b. Progress. Тип информации, которую вы хотите, чтобы фоновый поток передавал потоку пользовательского интерфейса, чтобы вы могли сообщить пользователю, что происходит.
c. Result. Какие данные вы хотите указать в результате фоновой операции; в большинстве случаев это либо правда, либо ложь. Если операция выполнена успешно, значит, это правда, в противном случае - ложь.
❷ Это единственная обязательная функция для отмены. Как следует из названия, здесь вы будете делать что-то в фоновом режиме. Всякий раз, когда вам нужно прочитать / записать файл или сетевой ввод-вывод, вы захотите сделать это здесь. Эта функция принимает параметр vararg Void, он соответствует первому параметру типа, который мы определили для нашего класса. Если вы сделали первый параметр типа String, то doInBackground должен принимать String. Также обратите внимание, что этот метод возвращает логическое значение; это потому, что мы передали логическое значение в качестве третьего типа параметра.
❸ Периодически вы можете информировать пользователя о том, что происходит в вашем приложении, особенно если это длительная операция. Это позволяет сделать метод publishProgress. Пока вы находитесь внутри doInBackground, вы не можете вносить какие-либо изменения в пользовательский интерфейс. Изменения пользовательского интерфейса должны происходить в потоке пользовательского интерфейса. Когда вы вызываете publishProgress, среда выполнения Android вызывает onProgressUpdate - именно здесь вы можете вносить изменения в пользовательский интерфейс. Какой бы аргумент вы ни передали в publishProgress, onProgressUpdate его получит.
❹ Когда вы находитесь внутри этого метода, все операторы будут выполняться в потоке пользовательского интерфейса. Здесь вы вносите изменения в свои объекты просмотра. Метод принимает параметр String, потому что мы передали String в качестве параметра второго типа класса AsyncTask, и он соответствует этому. Этот метод будет вызван после того, как мы вызовем publishProgress из метода doInBackground; какие бы данные вы ни передали в publishProgress, он получит onProgressUpdate.
❺ Когда doInBackground завершит работу, среда выполнения вызовет этот метод. Параметр результата был возвращен doInBackground.
Теперь, когда мы познакомились со структурой AsyncTask, давайте посмотрим, как мы можем использовать ее в нашем примере подсчета. В листинге 15-11 показан полный и аннотированный код для AsyncTask при использовании в MainActivity.
Листинг 15-11. Полный код для MainActivity, аннотированный и объясненный
import android.os.AsyncTask
import android.support.v7.app.AppCompatActivity
import android.os.Bundle
import android.view.View
import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 button.setOnClickListener {
 Worker().execute() ❶
 }
 }
 inner class Worker : AsyncTask<Void, String, Boolean>() { ❷
 override fun doInBackground(vararg p0: Void?) : Boolean {
 for (i in 1..20) {
 publishProgress(i.toString()) ❸
 Thread.sleep(2000) ❹
 }
 return true
 }
 override fun onProgressUpdate(vararg values: String?) {
 textView.text = values[0] ❺
 }
override fun onPostExecute(result: Boolean?) {
 println(result)
 }
 }
}

❶ Создайте экземпляр Worker, затем выполните его.
❷ Определите AsyncTask как внутренний класс, чтобы мы могли ссылаться на объекты View включающей MainActivity. Параметры типа объясняются ниже.
a. Void. Мне действительно не нужно ничего передавать в AsyncTask, так что Void.
b. String. Метод onProgressUpdate обновит TextView. Поскольку мы будем использовать этот второй тип для обновления значения TextView, String кажется хорошим выбором.
c. Boolean. Когда мы закончили с doInBackground, мы хотим установить статус, указывающий на неудачу или успех; Boolean кажется хорошим выбором для этого.
❸ Давайте сообщим пользователю, каково текущее значение i. OnProgressUpdate принимает аргумент String; вот почему мы конвертируем i в Int.
❹ Это имитирует операцию длины.
❺ Теперь, когда мы были в потоке пользовательского интерфейса, мы можем безопасно установить текстовый атрибут TextView на текущее значение i. Мы передали только один параметр из publishProgress, поэтому, если мы хотим его получить, это 0-й элемент параметра values.
AsyncTask, как и классы Handler и Thread, освобождает поток пользовательского интерфейса.
Когда вы запускаете это, приложение мурлычет с плавной скоростью 60 кадров в секунду.
DoAsync Анко
Anko - это библиотека для Android, написанная на Kotlin компанией JetBrains (той же компанией, которая создала Kotlin). Вы можете использовать его для самых разных задач, но для нашей цели нам понадобится только часть doAsync. Как следует из названия, doAsync от Anko позволит нам запускать коды асинхронно или в фоновом режиме.
Прежде чем вы сможете использовать Anko, вам необходимо добавить его в зависимости файла Gradle проекта, как показано в Листинге 15-12.
Листинг 15-12. /app/build.gradle
dependencies {
 ....
 реализация 'org.jetbrains.anko: anko-common: 0.9'
}

Синтаксис использования doAsync показан в листинге 15-13.

Листинг 15-13. Синтаксис для doAsync

doAsync {
 // делаем что-то в фоновом режиме ❶
}

❶ Здесь вы можете читать или записывать в большие файлы, загружать файл из Интернета или выполнять задачу, выполнение которой займет много времени. Этот блок будет выполняться в фоновом потоке.
Следующая проблема - как вернуться к потоку пользовательского интерфейса. Помните, что фоновому потоку не разрешено ничего менять в пользовательском интерфейсе. Подход Anko, вероятно, является самым простым из всех других вариантов, которые мы обсуждали в предыдущих разделах. В листинге 15-14 показан пример кода, показывающий, как doAsync выполняет код в фоновом режиме и как он возвращается в поток пользовательского интерфейса.
Листинг 15-14. doAsync и activityUiThread
doAsync {
 // делаем что-то в фоновом режиме ❶
 activityUiThread {
 // вносим изменения в пользовательский интерфейс ❷
 textView.text = "Привет"
 }
}

❶ Фоновая обработка.
❷ Теперь вы вернулись к потоку пользовательского интерфейса. Это так просто. Когда вам нужно вернуться к потоку пользовательского интерфейса, вы можете сделать это внутри activityUiThreadblock.
В листинге 15-15 показан полный пример кода для MainActivity. Он использует doAsync от Anko для выполнения длинных вычислений и последующей записи чего-то обратно в пользовательский интерфейс.
Листинг 15-15. Полный код для MainActivity с использованием doAsync, с комментариями и пояснениями
import android.support.v7.app.AppCompatActivity
import android.os.Bundle
import kotlinx.android.synthetic.main.activity_main.*
import org.jetbrains.anko.activityUiThread
import org.jetbrains.anko.doAsync

class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 button.setOnClickListener { ❶
 doAsync {
 for(i in 1..15) { ❷
 Thread.sleep(2000) ❸
 activityUiThread {
 textView.text = i.toString() ❹
 }
}
 }
 }
 }
}

❶ Давайте настроим базовый OnClickListener. Это вызовет фоновую задачу.
❷ Давайте посчитаем от 1 до 15.
❸ Это имитирует длительную задачу. Наш цикл будет повторяться 15 раз, поэтому задача займет в общей сложности 30 секунд.
❹ Расскажем пользователю, что происходит с приложением. Обновите объект TextView с текущим значением i.
DoAsync, как и предыдущие примеры Thread, Handler и AsyncTask должны работать одинаково хорошо. Когда вы запустите этот код, приложение будет работать без сбоев со скоростью 60 кадров в секунду.
Вы видели четыре низкоуровневых метода выполнения задач в фоновом режиме. Надеюсь, примеры кода дали вам достаточно идей, чтобы продолжить работу самостоятельно.
Пример из реального мира
Прежде чем мы закроем главу, давайте поработаем над тем, что вы действительно можете использовать в своих проектах. Давайте возьмем информацию о пользователях из GitHub, используя их общедоступный API. GitHub позволяет любому получить доступ к https://api.github.com/users/ <username>. Если у вас есть учетная запись GitHub, попробуйте вызвать этот URL-адрес, используя свой логин GitHub, чтобы вы могли ознакомиться с тем, что он возвращает. В листинге 15-16 показан частичный вывод HTTP-вызова с использованием моего собственного идентификатора GitHub (tedhagos).
Листинг 15-16. Пример ответа JSON от GitHub API
"login": "tedhagos",
 "id": 1287584,
 "node_id": "MDQ6VXNlcjEyODc1ODQ=",
 "avatar_url": "https://avatars1.githubusercontent.com/u/1287584?v=4",
 "gravatar_id": "",
 "url": "https://api.github.com/users/tedhagos",
 "html_url": "https://github.com/tedhagos",
 "followers_url": "https://api.github.com/users/tedhagos/followers",
 "following_url": "https://api.github.com/users/tedhagos/following{/other_
user}",
 "gists_url": "https://api.github.com/users/tedhagos/gists{/gist_id}",
 "starred_url": "https://api.github.com/users/tedhagos/starred{/owner}{/
repo}",
 "subscriptions_url": "https://api.github.com/users/tedhagos/
subscriptions",
 "organizations_url": "https://api.github.com/users/tedhagos/orgs",
 "repos_url": "https://api.github.com/users/tedhagos/repos",
 "events_url": "https://api.github.com/users/tedhagos/events{/privacy}",
"received_events_url": "https://api.github.com/users/tedhagos/received_
events",
 "type": "User",
 "site_admin": false,
 "name": "Ted Hagos",
 "company": null,
 "blog": "https://workingdev.net",
 "location": null,
 "email": null,
 "hireable": null,
 "bio": "Currently CTO and Data Protection Officer of RenditionDigital
International. Sometimes a writer and tech trainer."
}

Мы хотим сделать следующее:
1. Предложите пользователю ввести учетную запись GitHub; это идентификатор входа. Мы будем использовать атрибут hint EditText, чтобы сообщить пользователю, что вводить.
2. Составьте HTTP-запрос, используя идентификатор входа, полученный от пользователя. Мы можем сделать наш подход к этому самостоятельно, используя низкоуровневые классы java.net, но это отвлечет нас от основной темы, поэтому мы будем использовать OkHttp. Это сторонняя библиотека, но она очень проста в использовании и, что самое главное, ее легко понять.
3. Сделайте HTTP-вызов GitHub API и запустите его в фоновом потоке. В этом проекте мы будем использовать doAsync от Anko. Это самый простой в использовании. Вы так не думаете?
4. Вызов HTTP возвращает объект JSON, как видно из листинга 15-16. Мы проанализируем сообщение JSON и получим только значение свойства name.
5. Мы вернемся к потоку пользовательского интерфейса, используя метод activityUiThread, и там мы обновим textView значением свойства name (которое мы получили из объекта JSON).
Таблица 15-1 показывает детали демонстрационного проекта.
Таблица 15-1. Подробности проекта
	Детали проекта
	Значения

	Название приложения
	CH15GetGitHubInfo

	Домен компании
	использует имя вашего веб-сайта

	Поддержка Kotlin
	Да

	Форм-фактор
	только для телефона и планшета

	минимальный SDK
	API 23 Marshmallow

	Вид деятельности
	Пусто

	Название действия
	MainActivity

	Название макета
	activity_main

	Обратная совместимость
	Да. AppCompat



Снимок экрана пользовательского интерфейса показан на рисунке 15-2. Мы будем использовать EditText, чтобы принимать вводимые пользователем данные, и мы будем использовать TextView для отображения атрибута name возвращенного файла JSON.
[image: ]
Рисунок 15-2. Пользовательский интерфейс для CH15GetGitHubInfo
В листинге 15-17 показан полный листинг activity_main.xml.
Листинг 15-17. /app/res/layout/activity_main.xml
<? xml version = "1.0" encoding = "utf-8"?>
<android.support.constraint.ConstraintLayout xmlns: android = http: // schemas.
android.com/apk/res/android
 xmlns: приложение = http: //schemas.android.com/apk/res-auto
 xmlns: tools = http: //schemas.android.com/tools
 android: layout_width = "match_parent"
 android: layout_height = "match_parent"
 инструменты: context = ". MainActivity"
 инструменты: layout_editor_absoluteY = "81dp">
 <Кнопка
 android: id = "@ + id / button"
 android: layout_width = "wrap_content"
 android: layout_height = "wrap_content"
 android: layout_marginTop = "8dp"
 android: text = "Кнопка"
 app: layout_constraintStart_toStartOf = "@ + id / txtusername"
 app: layout_constraintTop_toBottomOf = "@ + id / txtusername" />
 <TextView
 android: id = "@ + id / txtusername"
 android: layout_width = "wrap_content"
 android: layout_height = "wrap_content"
 android: layout_marginTop = "8dp"
 android: text = "TextView"
 android: textSize = "30sp"
 app: layout_constraintStart_toStartOf = "@ + id / txtsearchuser"
 app: layout_constraintTop_toBottomOf = "@ + id / txtsearchuser" />
 <EditText
 android: id = "@ + id / txtsearchuser"
 android: layout_width = "wrap_content"
 android: layout_height = "wrap_content"
 android: layout_marginStart = "31dp"
android: layout_marginTop = "30dp"
 android: ems = "10"
 android: inputType = "textPersonName"
 android: text = "Имя"
 app: layout_constraintStart_toStartOf = "родительский"
 app: layout_constraintTop_toTopOf = "parent" />
</android.support.constraint.ConstraintLayout>

Прежде чем вы сможете использовать OkHttp и библиотеку Anko, вам необходимо добавить их зависимости в файл Gradle уровня модуля проекта. В листинге 15-18 показано, что вам нужно добавить в раздел зависимостей /app/build.gradle.
Листинг 15-18. Добавьте OkHttp и Anko в /app/build.gradle
dependencies {
 implementation fileTree(dir: 'libs', include: ['*.jar'])
 implementation"org.jetbrains.kotlin:kotlin-stdlib-jre7:$kotlin_version"
 implementation 'com.android.support:appcompat-v7:28.0.0-alpha3'
 implementation 'com.android.support.constraint:constraint-layout:1.1.2'
 testImplementation 'junit:junit:4.12'
 androidTestImplementation 'com.android.support.test:runner:1.0.2'
 androidTestImplementation 'com.android.support.test.espresso:espressocore:3.0.2'
 implementation 'com.squareup.okhttp:okhttp:2.5.0' ❶
 implementation 'org.jetbrains.anko:anko-common:0.9' ❷
}

❶ Вам необходимо добавить это, чтобы использовать OkHttp.
❷ Вам нужно добавить это, чтобы вы могли использовать doAsync Anko.
После того, как вы добавили Anko и OkHttp в файл gradle, вам необходимо синхронизировать файл. Щелкните ссылку «Синхронизировать сейчас», которая находится в правом верхнем углу экрана, как показано на рисунке 15-3.
[image: ]
Рисунок 15-3. Синхронизируйте файл Gradle после внесения изменений
На веб-сайте OkHttp есть образец кода, который показывает базовое использование - он показан в Листинге 15-19. Он написан на Java, но его легко адаптировать для наших целей.
Листинг 15-19. Пример кода из http://square.github.io/okhttp/

OkHttpClient client = new OkHttpClient();
String run(String url) throws IOException {
 Request request = new Request.Builder()
 .url(url)
 .build();
 Response response = client.newCall(request).execute();
 return response.body().string();
} 

В листинге 15-20 показана наша версия кода OkHttp для Kotlin.
Листинг 15-20. Наша Kotlin версия кода OkHttp
private fun fetchGitHubInfo(login_id: String): String {
 val url = https://api.github.com/users/$login_id
 val client = OkHttpClient()
 val request = Request.Builder().url(url).build()
 val response = client.newCall(request).execute()
 val bodystr = response.body().string() // this can be consumed only once
 return bodystr
}

Это достаточно близко. Между прочим, я надеюсь, вы обратили внимание на предпоследнюю строку листинга 15-20 - я даже прокомментировал ее. Когда вы вызываете response.body.string, вы можете использовать его только один раз, поэтому вы не можете выполнять такие вызовы:
println (response.body.string ()) // потребляет контент
val bodystr = response.body (). строка (). // здесь больше нет файла JSON

Вызов response.body.string не идемпотентен. Вы не можете делать к нему повторные вызовы и ожидать, что он будет возвращать одни и те же результаты при каждом вызове.
Теперь, когда у нас есть все необходимое, пришло время написать код MainActivity.
В листинге 15-21 показан полный и аннотированный код MainActivity.
Листинг 15-21. MainActivity, аннотированный и объясненный
import android.support.v7.app.AppCompatActivity
import android.os.Bundle
import com.squareup.okhttp.OkHttpClient
import com.squareup.okhttp.Request
import kotlinx.android.synthetic.main.activity_main.*
import org.jetbrains.anko.activityUiThread
import org.jetbrains.anko.doAsync
import org.json.JSONObject

class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 button.setOnClickListener {
 doAsync { ❶
 val mgithubinfo = fetchGitHubInfo(txtsearchuser.text.toString()) ❷
 val jsonreader = JSONObject(mgithubinfo) ❸
 activityUiThread { ❹
 txtusername.text = jsonreader.getString("name") 
        ❺
 }
 }
 }
 }
private fun fetchGitHubInfo(login_id: String): String {
 val url = "https://api.github.com/users/$login_id"
 val client = OkHttpClient()
 val request = Request.Builder().url(url).build()
 val response = client.newCall(request).execute()
 val bodystr = response.body().string() // this can be consumed only once
 return bodystr
 }
 override fun onResume() {
 super.onResume()
 txtsearchuser.setText("")
 txtsearchuser.setHint("Enter GitHub username")
 }
}

❶ Блок doAsync в Anko начинается здесь. Все внутри этого блока будет выполняться в фоновом потоке.
❷ Давайте передадим текущее значение txtsearchuser EditText в fetchGitHubInfo и назначим полученный объект JSON переменной mgithubinfo.
❸ Давайте проанализируем mgithubinfo с помощью встроенного JSONObject.
❹ Теперь нам нужно вернуться к потоку пользовательского интерфейса, чтобы мы могли записать результат http-вызова в пользовательский интерфейс.
❺ Блок activityUiThread позволяет нам вернуться к потоку пользовательского интерфейса и внести некоторые изменения.
Мы устанавливаем текстовый атрибут txtusername на свойство name файла JSON.
Еще одна вещь, которую нужно сделать, прежде чем мы сможем запустить приложение: нам нужно добавить разрешение INTERNET в файл манифеста.
Листинг 15-22. AndroidManifest.xml
<? xml version = "1.0" encoding = "utf-8"?>
<manifest xmlns: android = "http://schemas.android.com/apk/res/android"
 package = "net.workingdev.ch15getgithubinfo">
 <uses-permission android: name = "android.permission.INTERNET" /> ❶
<приложение
 ....
 </application> =
</manifest>

❶ Вы должны добавить это в файл AndroidManifest проекта.
На рисунке 15-4 показано работающее приложение.
[image: ]
Рисунок 15-4. CH15GetGitHubInfo на эмуляторе

Краткое содержание главы
· Что такое джанк? Когда вы пытаетесь сделать слишком много в потоке пользовательского интерфейса,
· Среда выполнения Android начнет сбрасывать кадры. Когда FPS вашего приложения упадет, пользовательский интерфейс будет заикаться, он будет медленным и неудобным в использовании. Это чушь.
· Как этого избежать? Не пытайтесь делать слишком много с UI Thread. Не надо:
· Чтение из большого файла или запись большого объема информации в файл.
· Подключайтесь к сети и считывайте из нее (или пишите).
· Вычислить сложную процедуру. Делайте это в фоновом потоке.
· Что такое поток пользовательского интерфейса? Именно исходный поток отвечает за создание (и изменение) элементов представления в вашем приложении. Некоторые разработчики называют поток пользовательского интерфейса «основным потоком».
· Что такое фоновый поток? Любой поток, который не является потоком пользовательского интерфейса. Обычно вы создаете фоновый поток для своего приложения.
· Как можно создать фоновую цепочку? Потоки Java, обработчики, AsyncTask и doAsync от Anko

В следующей главе:
· Мы узнаем о типах ошибок, с которыми ежедневно сталкиваются разработчики.
· Мы также дадим несколько советов, как их избежать.
· Мы узнаем, что делать, если мы по колено ошибаемся.
image1.emf

image2.emf

image3.emf

image4.emf

